-
February 2025 (1)
-
November 2024 (1)
-
October 2024 (1)
-
September 2024 (1)
-
April 2024 (3)
-
January 2024 (1)
-
October 2023 (1)
-
September 2023 (3)
-
August 2023 (1)
-
June 2023 (1)
-
April 2023 (3)
-
March 2023 (2)
-
February 2023 (1)
-
January 2023 (1)
-
December 2022 (2)
-
October 2022 (2)
-
September 2022 (2)
-
August 2022 (2)
-
July 2022 (1)
-
June 2022 (1)
-
May 2022 (2)
-
April 2022 (2)
-
March 2022 (1)
-
February 2022 (2)
-
January 2022 (1)
-
December 2021 (1)
-
November 2021 (1)
-
October 2021 (2)
-
July 2021 (1)
-
June 2021 (1)
-
May 2021 (1)
-
April 2021 (3)
-
March 2021 (2)
-
January 2021 (1)
-
November 2020 (3)
-
September 2020 (1)
-
August 2020 (1)
-
May 2020 (3)
-
April 2020 (3)
-
February 2020 (2)
-
January 2020 (1)
-
December 2019 (2)
-
August 2019 (2)
-
April 2019 (1)
-
November 2018 (5)
- Oracle row cache objects Event: 10222, Dtrace Script (I)
- Row Cache Objects, Row Cache Latch on Object Type: Plsql vs Java Call (Part-1) (II)
- Row Cache Objects, Row Cache Latch on Object Type: Plsql vs Java Call (Part-2) (III)
- Row Cache and Sql Executions (IV)
- Latch: row cache objects Contentions and Scalability (V)
-
October 2018 (2)
-
July 2018 (3)
-
April 2018 (1)
-
March 2018 (2)
-
February 2018 (1)
-
January 2018 (4)
-
October 2017 (2)
-
September 2017 (2)
-
July 2017 (3)
-
May 2017 (8)
- JDBC, Oracle object/collection, dbms_pickler, NOPARALLEL sys.type$ query
- PLSQL Context Switch Functions and Cost
- Oracle Datetime (1) - Concepts
- Oracle Datetime (2) - Examples
- Oracle Datetime (3) - Assignments
- Oracle Datetime (4) - Comparisons
- Oracle Datetime (5) - SQL Arithmetic
- Oracle Datetime (6) - PLSQL Arithmetic
-
March 2017 (3)
-
February 2017 (1)
-
January 2017 (1)
-
November 2016 (1)
-
September 2016 (2)
-
August 2016 (1)
-
June 2016 (1)
-
May 2016 (1)
-
April 2016 (1)
-
February 2016 (1)
-
January 2016 (3)
-
December 2015 (1)
-
November 2015 (1)
-
September 2015 (2)
-
August 2015 (1)
-
July 2015 (2)
-
June 2015 (1)
-
April 2015 (2)
-
January 2015 (1)
-
December 2014 (1)
-
November 2014 (2)
-
May 2014 (3)
-
March 2014 (2)
-
November 2013 (3)
-
September 2013 (1)
-
June 2013 (2)
-
April 2013 (2)
-
March 2013 (3)
-
December 2012 (1)
-
November 2012 (2)
-
July 2012 (1)
-
May 2012 (1)
-
April 2012 (1)
-
February 2012 (1)
-
November 2011 (2)
-
July 2011 (1)
-
May 2011 (3)
-
April 2011 (1)
On Oracle
Tuesday, February 18, 2025
One Oracle CLOB Space Usage Test
In this Blog, we will make LOB space usage test to show the used_blocks, expired_blocks, unexpired_blocks.
And in case of LOB "buffer busy waits" and "latch: cache buffers chains", we list the type of LOB data blocks in buffer cache.
Note: Tested in Oraclw 19.25 with following UNDO parameters:
Run following test to insert 1000 rows (TEST_SEQ is cycle with maxvalue 1000), each row has one CLOB of 1MB, so total is about 1000MB.
By the way, previous Blog: "LOB ORA-22924: snapshot too old and Fix" (http://ksun-oracle.blogspot.com/2019/04/lob-ora-22924-snapshot-too-old-and-fix.html) showed the special behaviour of LOB snapshot too old.
We can also run a parallel job sessions to show 'buffer busy waits' / 'latch: cache buffers chains' and the contention data block CLASS#.
Run job test by:
With following query, we can display the type of data blocks in buffer cache:
We can also dump the segment header and bitmap blocks to reveal space distribution.
Strangely, once RETENTION_TYPE is set to NONE, setting back to DEFAULT gets error:
And in case of LOB "buffer busy waits" and "latch: cache buffers chains", we list the type of LOB data blocks in buffer cache.
Note: Tested in Oraclw 19.25 with following UNDO parameters:
temp_undo_enabled boolean TRUE
undo_management string AUTO
undo_retention integer 3600
1. Test Run
Run following test to insert 1000 rows (TEST_SEQ is cycle with maxvalue 1000), each row has one CLOB of 1MB, so total is about 1000MB.
-- see appended Test Code
truncate table test_tab_lob;
set serveroutput on size unlimited
alter sequence test_seq_1000 restart start with 1;
exec check_space_securefile_2('K', 'TEST_TAB_LOB', 'MYLOB');
-- 10000 inserts for total 1000 rows, each row is repeatedly overwritten.
exec test_lob_proc(1, 1000, 1e4);
exec check_space_securefile_2('K', 'TEST_TAB_LOB', 'MYLOB');
select round(sum(dbms_lob.getlength(mylob))/1024/1024, 2) LOB_MB, round(sum(length(mylob))/1024/1024, 2) MB
,count(id), min(id), max(id), min(ts), max(ts) from test_tab_lob;
The output looks like:
SQL > exec test_lob_proc(1, 1000, 1e4);
Each mylob Length = 1056000, SUM Size (MB) =10000
SUM Size (MB) =10000, Real Contained Size (MB, due to TEST_SEQ_1000.Max Limit) = 1000
Elapsed: 00:08:02.09
SQL > exec check_space_securefile_2('K', 'TEST_TAB_LOB', 'MYLOB');
===========================================================================
segment_size_blocks = 1301880
used_blocks = 145718 (11.19 %)
expired_blocks = 1156162 (88.81 %)
unexpired_blocks = 0 (0 %)
===========================================================================
Segment Blocks/Bytes = 1301880 / 10665000960 (10170.94 MB)
Unused Blocks/Bytes = 0 / 0 (0 %)
Used Blocks/Bytes = 145718 / 1193721856 (11.19 %)
Expired Blocks/Bytes = 1156162 / 9471279104 (88.81 %)
Unexpired Blocks/Bytes = 0 / 0 (0 %)
===========================================================================
NON Data Blocks = 1156162 (88.81 %)
NON_data_blocks_2 (= segment_size_blocks - used_blocks) = 1156162
===========================================================================
LOBSEGMENT DBA_EXTENTS storage size Blocks = 1301880, CNT = 280, MIN_Blocks = 120, MAX_Blocks = 8192
LOBSEGMENT DBA_EXTENTS storage size Byets = 10665000960 (10170.94 MB)
LOBSEGMENT DBA_SEGMENTS storage size Blocks = 1301880
LOBSEGMENT DBA_SEGMENTS storage size Byets = 10665000960 (10170.94 MB)
SQL > select round(sum(dbms_lob.getlength(mylob))/1024/1024, 2) LOB_MB, round(sum(length(mylob))/1024/1024, 2) MB
,count(id), min(id), max(id), min(ts), max(ts) from test_tab_lob;
LOB_MB MB COUNT(ID) MIN(ID) MAX(ID) MIN(TS) MAX(TS)
------- ---------- ---------- -------- -------- -------------------- --------------------
1007.08 1007.08 1000 1 1000 17-FEB-2025 11:14:27 17-FEB-2025 11:15:15
Above output shows that for 1007.08 MB CLOB data, the segment consumes about 10170.94 MB, of which 88.81% is used for NON Data Blocks,
and they are expired_blocks.By the way, previous Blog: "LOB ORA-22924: snapshot too old and Fix" (http://ksun-oracle.blogspot.com/2019/04/lob-ora-22924-snapshot-too-old-and-fix.html) showed the special behaviour of LOB snapshot too old.
We can also run a parallel job sessions to show 'buffer busy waits' / 'latch: cache buffers chains' and the contention data block CLASS#.
Run job test by:
--exec clearup_test;
truncate table test_tab_lob;
alter sequence test_seq_1000 restart start with 1;
exec check_space_securefile_2('K', 'TEST_TAB_LOB', 'MYLOB');
exec test_lob_proc_job(16, 1000, 1e3);
-- Wait till all Jobs finished
select count(*) from dba_scheduler_jobs where job_name like '%TEST_JOB%';
-- Show space usage
exec check_space_securefile_2('K', 'TEST_TAB_LOB', 'MYLOB');
And run monitoring query during test to watch the wait event:
select program, event, module, action, event, p1, p2, p3, p1text, p2text, p3text, t.*
from v$active_session_history t
where sample_time > sysdate -10/1440 and action like 'TEST_JOB%'
and event in ('buffer busy waits', 'latch: cache buffers chains')
order by t.sample_time desc;
It shows that most of 'buffer busy waits' / 'latch: cache buffers chains' are on LOB metadata CLASS# 8 (1st level bmb) and 6 (free list).With following query, we can display the type of data blocks in buffer cache:
with sq as (select /*+ materialize */ segment_name, index_name from dba_lobs where owner='K' and table_name='TEST_TAB_LOB'),
obj as (select /*+ materialize */ object_name||', '||object_type LOB_INFO, object_id, data_object_id
from dba_objects t, sq where object_name = 'TEST_TAB_LOB' or object_name = sq.segment_name or object_name = sq.index_name)
select LOB_INFO, objd, class#, status, dirty, file#, count(block#), count(distinct block#) from v$bh, obj
where objd = obj.data_object_id
group by LOB_INFO, objd, class#, status, dirty, file# order by 1, 6 desc, 2, 3, 4, 5 desc;
LOB_INFO OBJD CLASS# STATUS D FILE# COUNT(BLOCK#) COUNT(DISTINCTBLOCK#)
--------------------------------- ---------- ---------- ---------- - ---------- ------------- ---------------------
SYS_IL0005743559C00005$$, INDEX 5743561 1 xcur N 1625 1 1
SYS_IL0005743559C00005$$, INDEX 5743561 4 xcur N 1625 1 1
SYS_IL0005743559C00005$$, INDEX 5743561 8 xcur N 1625 1 1
SYS_LOB0005743559C00005$$, LOB 5743564 4 cr N 1625 5 1
SYS_LOB0005743559C00005$$, LOB 5743564 4 xcur Y 1625 1 1
SYS_LOB0005743559C00005$$, LOB 5743564 6 cr N 1625 205 46
SYS_LOB0005743559C00005$$, LOB 5743564 6 xcur Y 1625 56 56
SYS_LOB0005743559C00005$$, LOB 5743564 8 cr N 1625 34 9
SYS_LOB0005743559C00005$$, LOB 5743564 8 xcur Y 1625 9 9
SYS_LOB0005743559C00005$$, LOB 5743564 9 cr N 1625 424 106
SYS_LOB0005743559C00005$$, LOB 5743564 9 xcur Y 1625 126 126
SYS_LOB0005743559C00005$$, LOB 5743564 9 xcur N 1625 59 59
SYS_LOB0005743559C00005$$, LOB 5743564 10 cr N 1625 115 26
SYS_LOB0005743559C00005$$, LOB 5743564 10 xcur Y 1625 50 50
SYS_LOB0005743559C00005$$, LOB 5743564 12 xcur N 1625 1271 1271
TEST_TAB_LOB, TABLE 5743565 1 cr N 1625 114 28
TEST_TAB_LOB, TABLE 5743565 1 xcur Y 1625 28 28
TEST_TAB_LOB, TABLE 5743565 4 cr N 1625 1 1
TEST_TAB_LOB, TABLE 5743565 4 xcur Y 1625 1 1
TEST_TAB_LOB, TABLE 5743565 8 xcur Y 1625 2 2
TEST_TAB_LOB, TABLE 5743565 9 xcur Y 1625 1 1
21 rows selected.
The above output shows that majority blocks are from CLASS# 12 (bitmap index block) and CLASS# 9 (2nd level bmb),
and hardly see blocks of CLASS# 1 (data block), because Oracle uses "direct path" for LOB data (not IN ROW short LOB).We can also dump the segment header and bitmap blocks to reveal space distribution.
with sq as (select /*+ materialize */ segment_name, index_name from dba_lobs where owner='K' and table_name='TEST_TAB_LOB')
select t.segment_name, tablespace_name, header_file, relative_fno, header_block, bytes, blocks, extents from dba_segments t, sq
where t.segment_name = sq.segment_name or t.segment_name = sq.index_name;
SEGMENT_NAME TABLESPACE_NAME HEADER_FILE RELATIVE_FNO HEADER_BLOCK BYTES BLOCKS EXTENTS
-------------------------- ---------------- ----------- ------------ ------------ ---------- ---------- ----------
SYS_LOB0005743559C00005$$ TEST_TBS 1625 1024 262153 1.0661E+10 1301376 276
SYS_IL0005743559C00005$$ TEST_TBS 1625 1024 262274 65536 8 1
alter session set max_dump_file_size = UNLIMITED;
alter session set tracefile_identifier = 'TEST_TAB_LOB_SEGMENT_DUMP_3';
EXECUTE DBMS_SPACE_ADMIN.SEGMENT_DUMP('TEST_TBS', 1024, 262153);
-- Dump DDL
select dbms_metadata.get_ddl('TABLE', 'TEST_TAB_LOB', 'KS') from dual;
or dump single bmb block:
select * from v$bh where objd=5743591 and class#=8 and status='xcur';
-- 1625 262159 8 xcur
alter session set max_dump_file_size = UNLIMITED;
alter session set tracefile_identifier = 'bmb_1_262159_dump';
alter system dump datafile 1625 block 262159;
In above test, the CLOB retention_type is DEFAULT:
select t.column_name, t.retention_type, retention_value, s.segment_name, s.tablespace_name, s.header_file, s.relative_fno, s.header_block--, t.*
from dba_lobs t, dba_segments s where t.owner='K' and t.table_name='TEST_TAB_LOB' and t.segment_name = s.segment_name;
COLUMN_NAME RETENTION_TYPE RETENTION_VALUE SEGMENT_NAME TABLESPACE_NAME HEADER_FILE RELATIVE_FNO HEADER_BLOCK
------------ --------------- --------------- -------------------------- ----------------- ----------- ------------ ------------
MYLOB DEFAULT SYS_LOB0005743559C00005$$ TEST_TBS 1625 1024 262153
We can modify its retention_type as NONE by:
alter table TEST_TAB_LOB modify lob(mylob) (retention none);
SQL > select t.column_name, t.retention_type, retention_value, s.segment_name, s.tablespace_name, s.header_file, s.relative_fno, s.header_block--, t.*
from dba_lobs t, dba_segments s where t.owner='K' and t.table_name='TEST_TAB_LOB' and t.segment_name = s.segment_name;
COLUMN_NAME RETENTION_TYPE RETENTION_VALUE SEGMENT_NAME TABLESPACE_NAME HEADER_FILE RELATIVE_FNO HEADER_BLOCK
------------ --------------- --------------- -------------------------- ----------------- ----------- ------------ ------------
MYLOB NONE SYS_LOB0005743559C00005$$ TEST_TBS 1625 1024 262153
and then repeat above test:
SQL > exec test_lob_proc(1, 1000, 1e4);
Each mylob Length = 1056000, SUM Size (MB) =10000
SUM Size (MB) =10000, Real Contained Size (MB, due to TEST_SEQ_1000.Max Limit) = 1000
Elapsed: 00:08:02.12
SQL > exec check_space_securefile_2('K', 'TEST_TAB_LOB', 'MYLOB');
===========================================================================
segment_size_blocks = 163960
used_blocks = 144372 (88.05 %)
expired_blocks = 19588 (11.95 %)
unexpired_blocks = 0 (0 %)
===========================================================================
Segment Blocks/Bytes = 163960 / 1343160320 (1280.94 MB)
Unused Blocks/Bytes = 0 / 0 (0 %)
Used Blocks/Bytes = 144372 / 1182695424 (88.05 %)
Expired Blocks/Bytes = 19588 / 160464896 (11.95 %)
Unexpired Blocks/Bytes = 0 / 0 (0 %)
===========================================================================
NON Data Blocks = 19588 (11.95 %)
NON_data_blocks_2 (= segment_size_blocks - used_blocks) = 19588
===========================================================================
LOBSEGMENT DBA_EXTENTS storage size Blocks = 163960, CNT = 140, MIN_Blocks = 120, MAX_Blocks = 8192
LOBSEGMENT DBA_EXTENTS storage size Byets = 1343160320 (1280.94 MB)
LOBSEGMENT DBA_SEGMENTS storage size Blocks = 163960
LOBSEGMENT DBA_SEGMENTS storage size Byets = 1343160320 (1280.94 MB)
SQL > select round(sum(dbms_lob.getlength(mylob))/1024/1024, 2) LOB_MB, round(sum(length(mylob))/1024/1024, 2) MB
,count(id), min(id), max(id), min(ts), max(ts) from test_tab_lob;
LOB_MB MB COUNT(ID) MIN(ID) MAX(ID) MIN(TS) MAX(TS)
------- ---------- ---------- ---------- ---------- --------------------- --------------------
1007.08 1007.08 1000 1 1000 17-FEB-2025 11:41:04 17-FEB-2025 11:41:52
The above output shows that when RETENTION_TYPE=NONE, only 1280.94 MB is used and expired_blocks is 11.95%,
compared to previous RETENTION_TYPE=DEFAULT, 10170.94 MB is used and expired_blocks is 88.81%.Strangely, once RETENTION_TYPE is set to NONE, setting back to DEFAULT gets error:
SQL > alter table TEST_TAB_LOB modify lob(mylob) (retention default);
alter table TEST_TAB_LOB modify lob(mylob) (retention default)
*
ERROR at line 1:
ORA-22853: invalid LOB storage option specification
Here is one hacking workaround to set it back to DEFAULT:
select header_file, relative_fno, header_block, t.* from dba_segments t where segment_name = 'SYS_LOB0005742851C00004$$';
--1625 137
select lists
,decode(s.lists, 0, 'NONE', 1, 'AUTO',
2, 'MIN', 3, 'MAX',
4, 'DEFAULT', 'INVALID') ora_retention_type
,(select retention_type from dba_lobs t where table_name='TEST_TAB_LOB') dba_retention_type
,s.*
from sys.seg$ s where file# = 1024 and block# = 262153; -- lists stores RETENTION
--4 DEFAULT DEFAULT 1024 262153
--0 NONE NONE 1024 262153
update sys.seg$ set lists= 4 where file# = 1024 and block# = 262153; -- set RETENTION_TYPE to DEFAULT as DBA
commit;
In this Blog, we tested CLOB with "SECUREFILE/COMPRESS/NOCACHE", the similar behavior is also observed with "BASICFILE/NO COMPRESS/CACHE READS".
2. Test Setup
drop tablespace test_tbs including contents and datafiles;
create bigfile tablespace test_tbs datafile '/oratestdb/oradata/testdb/test_tbs.dbf' size 10G online;
drop table test_tab_lob cascade constraints;
create table test_tab_lob(id number, cnt number, ts timestamp with local time zone default localtimestamp, lob_state varchar2(20), mylob clob)
segment creation immediate tablespace test_tbs
lob (mylob) store as securefile (
tablespace test_tbs enable storage in row chunk 8192 retention
nocache logging compress medium keep_duplicates
storage(initial 65536 next 131072 minextents 1 maxextents 2147483645
pctincrease 0 freelists 1 freelist groups 1
buffer_pool default flash_cache default cell_flash_cache default)) enable row movement;
drop sequence test_seq_1000;
create sequence test_seq_1000 start with 1 maxvalue 1000 minvalue 1 cycle cache 10 global;
3. Test Code
create or replace procedure test_lob_proc(p_job_nr number, p_kb_cnt number, p_loop_cnt number) as
l_mylob clob;
l_src_mylob clob;
l_lob_32kb clob := lpad('abc', 32000, 'x');
l_seq number;
l_ts_text varchar2(50);
begin
l_ts_text := to_char(localtimestamp, 'YYYY*MON*DD-HH24:MI:SS.FF9');
l_lob_32kb := dbms_random.string('p', 4000);
--CLOB stored in AL16UTF16 (wo bytes) in AL32UTF8 database. Use dbms_random.string due to CLOB compress
for i in 1..7 loop
dbms_lob.append(dest_lob => l_lob_32kb, src_lob => dbms_random.string('p', 4000));
end loop;
l_src_mylob := l_lob_32kb;
if p_kb_cnt >= 32 then
for i in 1..round(p_kb_cnt/32)+1 loop
dbms_lob.append(l_src_mylob, l_lob_32kb);
end loop;
else
l_src_mylob := dbms_lob.substr(l_lob_32kb, p_kb_cnt*1000, 1);
end if;
dbms_output.put_line('Each mylob Length = '||dbms_lob.getlength(l_src_mylob) ||', SUM Size (MB) ='|| (p_loop_cnt*p_kb_cnt/1000));
dbms_output.put_line('SUM Size (MB) ='|| (p_loop_cnt*p_kb_cnt/1000) ||', Real Contained Size (MB, due to TEST_SEQ_1000.Max Limit) = '|| (1000*p_kb_cnt/1000));
for k in 1..p_loop_cnt loop
l_seq := test_seq_1000.nextval;
merge
into test_tab_lob l
using (select l_seq id, 1 cnt, localtimestamp ts, 'pending' lob_state, empty_clob() mylob from dual) v
on (l.id = v.id)
when matched then
update set cnt = v.cnt + 1, mylob = v.mylob
when not matched then
insert (id, cnt, ts, mylob) values (l_seq, 1, localtimestamp, v.mylob);
--select mylob into l_mylob from test_tab_lob where id = l_seq;
--dbms_lob.append(dest_lob => l_mylob, src_lob => l_src_mylob);
-- @TODO First commit more important table scalar columns (fast by LGWR and DBWR) to make them visible, and then mise-a-jour LOB column.
commit;
update test_tab_lob set lob_state = 'updated', mylob = l_src_mylob where id = l_seq;
commit;
if k <= 10 then
dbms_output.put_line('Create id = '||l_seq||', mylob Length = '||dbms_lob.getlength(l_src_mylob));
end if;
if k = 10 then
dbms_output.put_line('Create id: ........ only print first 10 id');
end if;
end loop;
end;
/
-- exec test_lob_proc(1, 1000*3, 10); -- insert 10 rows with mylob length=3MB
-------------------- create test jobs ----------------------
create or replace procedure test_lob_proc_job(p_job_cnt number, p_kb_cnt number, p_loop_cnt number) as
l_job_name varchar2(50);
begin
for i in 1..p_job_cnt loop
l_job_name := 'TEST_JOB_ENQ_'||i;
dbms_scheduler.create_job (
job_name => l_job_name,
job_type => 'PLSQL_BLOCK',
job_action =>
'begin
test_lob_proc('||i||', '||p_kb_cnt||', '||p_loop_cnt||');
end;',
start_date => systimestamp,
--repeat_interval => 'systimestamp',
auto_drop => true,
enabled => true);
end loop;
end;
/
4. LOB Space Usage
------------------------------------ SECUREFILE LOB space usage ------------------------------------
-- MOS: How to Determine what storage is used in a LOBSEGMENT and should it be shrunk / reorganized? (Doc ID 1453350.1)
CREATE OR REPLACE PROCEDURE check_space_securefile (u_name in varchar2, v_segname varchar2) IS
l_segment_size_blocks NUMBER;
l_segment_size_bytes NUMBER;
l_used_blocks NUMBER;
l_used_bytes NUMBER;
l_expired_blocks NUMBER;
l_expired_bytes NUMBER;
l_unexpired_blocks NUMBER;
l_unexpired_bytes NUMBER;
l_unused_blocks NUMBER;
l_unused_bytes NUMBER;
l_non_data_blocks NUMBER;
l_non_data_bytes NUMBER;
l_non_data_blocks_2 NUMBER;
BEGIN
DBMS_SPACE.SPACE_USAGE( segment_owner =>u_name, --segment_owner IN VARCHAR2,
segment_name => v_segname, --segment_name IN VARCHAR2,
segment_type => 'LOB', --segment_type IN VARCHAR2,
suoption => DBMS_SPACE.SPACEUSAGE_EXACT, -- or DBMS_SPACE.SPACEUSAGE_FAST
segment_size_blocks => l_segment_size_blocks, --segment_size_blocks OUT NUMBER,
segment_size_bytes => l_segment_size_bytes, --segment_size_bytes OUT NUMBER,
used_blocks => l_used_blocks, --used_blocks OUT NUMBER,
used_bytes => l_used_bytes, --used_bytes OUT NUMBER,
expired_blocks => l_expired_blocks, --expired_blocks OUT NUMBER,
expired_bytes => l_expired_bytes, --expired_bytes OUT NUMBER,
unexpired_blocks => l_unexpired_blocks, --unexpired_blocks OUT NUMBER,
unexpired_bytes => l_unexpired_bytes --unexpired_bytes OUT NUMBER,
--partition_name IN VARCHAR2 DEFAULT NULL
);
DBMS_OUTPUT.PUT_LINE('===========================================================================');
DBMS_OUTPUT.PUT_LINE('segment_size_blocks = '||l_segment_size_blocks);
DBMS_OUTPUT.PUT_LINE('used_blocks = '||l_used_blocks ||' ('||(round(100*l_used_blocks/l_segment_size_blocks, 2))||' %)');
DBMS_OUTPUT.PUT_LINE('expired_blocks = '||l_expired_blocks ||' ('||(round(100*l_expired_blocks/l_segment_size_blocks, 2))||' %)');
DBMS_OUTPUT.PUT_LINE('unexpired_blocks = '||l_unexpired_blocks||' ('||(round(100*l_unexpired_blocks/l_segment_size_blocks, 2))||' %)');
DBMS_OUTPUT.PUT_LINE('===========================================================================');
l_unused_blocks := l_segment_size_blocks - (l_used_blocks + l_expired_blocks + l_unexpired_blocks);
l_unused_bytes := l_segment_size_bytes - (l_used_bytes + l_expired_bytes + l_unexpired_bytes);
l_non_data_blocks := l_unused_blocks + l_expired_blocks + l_unexpired_blocks;
l_non_data_blocks_2 := l_segment_size_blocks - l_used_blocks;
DBMS_OUTPUT.ENABLE;
DBMS_OUTPUT.PUT_LINE('Segment Blocks/Bytes = '||l_segment_size_blocks||' / '||l_segment_size_bytes||' ('||round(l_segment_size_bytes/1024/1024, 2) ||' MB)');
DBMS_OUTPUT.PUT_LINE('Unused Blocks/Bytes = '||l_unused_blocks ||' / '||l_unused_bytes ||' ('||(round(100*l_unused_blocks/l_segment_size_blocks, 2))||' %)');
DBMS_OUTPUT.PUT_LINE('Used Blocks/Bytes = '||l_used_blocks ||' / '||l_used_bytes ||' ('||(round(100*l_used_blocks/l_segment_size_blocks, 2))||' %)');
DBMS_OUTPUT.PUT_LINE('Expired Blocks/Bytes = '||l_expired_blocks ||' / '||l_expired_bytes ||' ('||(round(100*l_expired_blocks/l_segment_size_blocks, 2))||' %)');
DBMS_OUTPUT.PUT_LINE('Unexpired Blocks/Bytes = '||l_unexpired_blocks ||' / '||l_unexpired_bytes ||' ('||(round(100*l_unexpired_blocks/l_segment_size_blocks, 2))||' %)');
DBMS_OUTPUT.PUT_LINE('===========================================================================');
DBMS_OUTPUT.PUT_LINE('NON Data Blocks = '||l_non_data_blocks||' ('||(round(100*l_non_data_blocks/l_segment_size_blocks, 2))||' %)');
DBMS_OUTPUT.PUT_LINE('NON_data_blocks_2 (= segment_size_blocks - used_blocks) = '||l_non_data_blocks_2);
DBMS_OUTPUT.PUT_LINE('===========================================================================');
-- Determine the storage size of the LOBSEGMENT
for c in (SELECT round(SUM(BYTES)/8192) blocks, SUM(BYTES) bytes, count(*) cnt, min(blocks) MIN_Blocks, max(blocks) MAX_Blocks FROM DBA_EXTENTS WHERE SEGMENT_NAME = v_segname) loop
DBMS_OUTPUT.PUT_LINE('LOBSEGMENT DBA_EXTENTS storage size Blocks = '||c.blocks||', CNT = ' ||c.cnt ||', MIN_Blocks = '||c.MIN_Blocks ||', MAX_Blocks = '||c.MAX_Blocks);
DBMS_OUTPUT.PUT_LINE('LOBSEGMENT DBA_EXTENTS storage size Byets = '||c.bytes ||' ('||round(c.bytes/1024/1024, 2) ||' MB)');
end loop;
for c in (SELECT round(SUM(BYTES)/8192) blocks, SUM(BYTES) bytes FROM DBA_SEGMENTS WHERE SEGMENT_NAME = v_segname) loop
DBMS_OUTPUT.PUT_LINE('LOBSEGMENT DBA_SEGMENTS storage size Blocks = '||c.blocks);
DBMS_OUTPUT.PUT_LINE('LOBSEGMENT DBA_SEGMENTS storage size Byets = '||c.bytes ||' ('||round(c.bytes/1024/1024, 2) ||' MB)');
end loop;
END;
/
CREATE OR REPLACE PROCEDURE check_space_securefile_2 (v_owner_name in varchar2, v_table_name varchar2, v_column_name varchar2) IS
l_lob_segment_name varchar2(100);
begin
select segment_name into l_lob_segment_name from dba_lobs where owner=v_owner_name and table_name=v_table_name and column_name=v_column_name;
check_space_securefile(u_name=>v_owner_name, v_segname=>l_lob_segment_name);
end;
/
Tuesday, November 5, 2024
Oracle Self-tune checkpointing lag of log switch
Often DB alert.log shows a lag of 5 minutes from log switch to Completed checkpoint as follows:
(from 11:03:36 to 11:08:39)
In this Blog, we will demonstrate those LGWR and CKPT asynchronous write and 3 hidden parameters with Linux bpftrace by following the advanced guidance Let's trace it! A peek into the inner workings of Oracle with bpftrace von Christoph Lutz.
In Linux window, start bpftrace script below:
LGWR records redo log activities at beginning (11:03:36), and only after about 5 minutes,
CKPT sends "Completed checkpoint" (11:08:39) with same "RBA [0x8b.2.10]".
If we look redo logs immediately after switch logfile, the current one is marked with log switch timestamp (11:03):
If we change it as (require DB restart):
If we disable the Self-tune by (require DB restart):
Of course, if we want to watch "Completed checkpoint", we can force a checkpoint by:
(from 11:03:36 to 11:08:39)
2024-11-04T11:03:36.681460+01:00
Beginning log switch checkpoint up to RBA [0x8b.2.10], SCN: 13022649669494
2024-11-04T11:03:36.681565+01:00
Thread 1 advanced to log sequence 139 (LGWR switch), current SCN: 13022649669494
Current log# 3 seq# 139 mem# 0: /oratestdb/oradata/testdb/redo03.dbf
2024-11-04T11:08:39.613734+01:00
Completed checkpoint up to RBA [0x8b.2.10], SCN: 13022649669494
is this a LGWR performance problem ?In this Blog, we will demonstrate those LGWR and CKPT asynchronous write and 3 hidden parameters with Linux bpftrace by following the advanced guidance Let's trace it! A peek into the inner workings of Oracle with bpftrace von Christoph Lutz.
_selftune_checkpointing_lag Self-tune checkpointing lag the tail of the redo log 300
_disable_selftune_checkpointing Disable self-tune checkpointing FALSE
_selftune_checkpoint_write_pct Percentage of total physical i/os for self-tune ckpt 3
Note: Tested in Oracle 19.24. In Linux window, start bpftrace script below:
BPFTRACE_STRLEN=200 bpftrace -e '
tracepoint:syscalls:sys_enter_openat /(strncmp("ora_lgwr", comm, 7) == 0 || strncmp("ora_ckpt", comm, 7) == 0) && strncmp("/oradir", str(args->filename), 7) == 0/
{time("====== %H:%M:%S ------ ");
printf("comm=%s, pid=%d, filename ------\n%8s%s\n", comm, pid, "", str(args->filename));}
tracepoint:syscalls:sys_enter_write /(strncmp("ora_lgwr", comm, 7) == 0 || strncmp("ora_ckpt", comm, 7) == 0) && strncmp("<",str(args->buf), 1) == 1/
{time("====== %H:%M:%S ------ ");
printf("comm=%s, pid=%d, fd=%d, BUF ------\n%s\n", comm, pid, args->fd, str(args->buf));}'
In Sqlplus window, run following SQL:
--create table test_tab as select 1 x from dual;
update tt1 set x = x + 1;
commit;
alter system switch logfile;
Back to Linux Window, we can see following output during around 5 minutes:
Attaching 2 probes...
====== 11:03:36 ------ comm=ora_lgwr_testdb, pid=1926182, filename ------
/oradir/app/oracle/admin/testdb/diag/rdbms/testdb/testdb/alert/log.xml
====== 11:03:36 ------ comm=ora_lgwr_testdb, pid=1926182, filename ------
/oradir/app/oracle/admin/testdb/diag/rdbms/testdb/testdb/trace/alert_testdb.log
====== 11:03:36 ------ comm=ora_lgwr_testdb, pid=1926182, fd=8, BUF ------
2024-11-04T11:03:36.681460+01:00
Beginning log switch checkpoint up to RBA [0x8b.2.10], SCN: 13022649669494
====== 11:03:36 ------ comm=ora_lgwr_testdb, pid=1926182, filename ------
/oradir/app/oracle/admin/testdb/diag/rdbms/testdb/testdb/alert/log.xml
====== 11:03:36 ------ comm=ora_lgwr_testdb, pid=1926182, filename ------
/oradir/app/oracle/admin/testdb/diag/rdbms/testdb/testdb/trace/alert_testdb.log
====== 11:03:36 ------ comm=ora_lgwr_testdb, pid=1926182, fd=8, BUF ------
2024-11-04T11:03:36.681565+01:00
Thread 1 advanced to log sequence 139 (LGWR switch), current SCN: 13022649669494
====== 11:03:36 ------ comm=ora_lgwr_testdb, pid=1926182, filename ------
/oradir/app/oracle/admin/testdb/diag/rdbms/testdb/testdb/alert/log.xml
====== 11:03:36 ------ comm=ora_lgwr_testdb, pid=1926182, filename ------
/oradir/app/oracle/admin/testdb/diag/rdbms/testdb/testdb/trace/alert_testdb.log
====== 11:03:36 ------ comm=ora_lgwr_testdb, pid=1926182, fd=8, BUF ------
Current log# 3 seq# 139 mem# 0: /oratestdb/oradata/testdb/redo03.dbf
====== 11:08:39 ------ comm=ora_ckpt_testdb, pid=1926186, filename ------
/oradir/app/oracle/admin/testdb/diag/rdbms/testdb/testdb/alert/log.xml
====== 11:08:39 ------ comm=ora_ckpt_testdb, pid=1926186, filename ------
/oradir/app/oracle/admin/testdb/diag/rdbms/testdb/testdb/trace/alert_testdb.log
====== 11:08:39 ------ comm=ora_ckpt_testdb, pid=1926186, fd=10, BUF ------
2024-11-04T11:08:39.613734+01:00
Completed checkpoint up to RBA [0x8b.2.10], SCN: 13022649669494
Both LGWR and CKPT write to DIAG "log.xml" and alert.log (xml content in "log.xml" are filtered out).LGWR records redo log activities at beginning (11:03:36), and only after about 5 minutes,
CKPT sends "Completed checkpoint" (11:08:39) with same "RBA [0x8b.2.10]".
If we look redo logs immediately after switch logfile, the current one is marked with log switch timestamp (11:03):
oracle@testdb:testdb > ls -ltr /oratestdb/oradata/testdb/redo*
-rw-r----- 1 oracle dba 1073742336 Nov 4 10:19 /oratestdb/oradata/testdb/redo04.dbf
-rw-r----- 1 oracle dba 1073742336 Nov 4 10:21 /oratestdb/oradata/testdb/redo01.dbf
-rw-r----- 1 oracle dba 1073742336 Nov 4 11:03 /oratestdb/oradata/testdb/redo03.dbf
-rw-r----- 1 oracle dba 1073742336 Nov 4 11:03 /oratestdb/oradata/testdb/redo02.dbf
As tested, the 5 minutes is an upper limit and controlled by the default 300 seconds of "_selftune_checkpointing_lag".If we change it as (require DB restart):
alter system set "_selftune_checkpointing_lag"=60 scope=spfile;
The "Completed checkpoint" is written after 1 minutes.If we disable the Self-tune by (require DB restart):
alter system set "_disable_selftune_checkpointing"=true scope=spfile;
CKPT will no more write "Completed checkpoint" in alert.log.Of course, if we want to watch "Completed checkpoint", we can force a checkpoint by:
alter system checkpoint;
Sunday, October 20, 2024
Find the skipped rows in select for update skip locked
This Blog will make a test to show how to find the skipped rows when running "select for update skip locked".
It first gets the number of skipped rows, and lists all the skipped rows as well.
We also give a workaround for delete skip locked.
Then we explore one unexpected Oracle behaviour of analytic function with skip locked in finding the skipped rows.
Note: Tested in Oracle 19.24.
We create one test table and one procedure to detect skipped rows.
We open two Sqlplus sessions, and make following test.
We first lock 3 rows with x between 5 and 7 in Session_1:
In Session_2, we are trying to lock 8 rows with x between 2 and 9.
The output shows that there are 8 rows found, but only 5 are updatable since 3 (=8-5) rows are locked by Session_1.
Then we list all 3 skipped rows.
Oracle does not support "delete skip locked" (error: ORA-00933: SQL command not properly ended). We can have a workaround if we run following code in Session_2:
When facing question: "Is there a way to get the data of the rows that were skipped ?",
Solomon Yakobson (Feb 22 2018) in Oracle Forums: For Update Skip Locked (https://forums.oracle.com/ords/apexds/post/for-update-skip-locked-6618)
revealed one related Oracle behaviour of analytic function with skip locked.
Here the test and all output, which shows locked row data will be included in analytic function related calculations of VAL_SUM, ROW_NUM.
(at first rollback all transactions in Session_1 and Session_2)
Similar to Section 1 Test Setup, we first code one Plsql procedure:
We first lock 3 rows with x between 5 and 7 in Session_1:
(at first rollback all transactions in Session_1 and Session_2)
In Session_2, we are trying to lock 8 rows with x between 2 and 9.
The output shows that there are 8 rows found, but only 5 are updatable since 3 (=8-5) rows are locked by Session_1.
Then we list all 3 skipped rows.
Rob van Wijk (February 7, 2009) in Blog: FOR UPDATE SKIP LOCKED (http://rwijk.blogspot.com/2009/02/for-update-skip-locked.html) showed:
(1). opening a cursor with the "for update skip locked" clause doesn't lock a single row. Fetching a row does lock the row.
(2). a "for update skip locked" doesn't only skip the locked rows, it also skips the rows that were modified between the opening and the fetching, thus avoiding the classic "lost update".
It first gets the number of skipped rows, and lists all the skipped rows as well.
We also give a workaround for delete skip locked.
Then we explore one unexpected Oracle behaviour of analytic function with skip locked in finding the skipped rows.
Note: Tested in Oracle 19.24.
1. Test Setup
We create one test table and one procedure to detect skipped rows.
drop table test_upd_tab;
create table test_upd_tab as select level x, -level y from dual connect by level <= 10;
create index test_upd_tab_idx_1 on test_upd_tab(x);
exec dbms_stats.gather_table_stats('K', 'TEST_UPD_TAB', cascade=>true);
--drop type test_upd_tab_set force;
--drop type test_upd_tab_row force;
create or replace type test_upd_tab_row as object (x number, y number, vsum number, rcnt number, rnum number);
/
create or replace type test_upd_tab_set is table of test_upd_tab_row;
/
create or replace procedure test_update_skip_locked(p_start number, p_end number) as
l_row_set_upd test_upd_tab_set;
l_updatable_rows number;
l_sql_text varchar2(4000);
l_xid varchar2(50);
l_start_scn number;
l_start_date date;
l_row_set_start test_upd_tab_set;
begin
select /*+ index(t test_upd_tab_idx_1) GATHER_PLAN_STATISTICS MONITOR test_ks_2 */ test_upd_tab_row(x, y, 0, 0, 0)
bulk collect into l_row_set_upd
from test_upd_tab t where x between p_start and p_end for update skip locked;
dbms_output.put_line(rpad('=', 100, '='));
dbms_output.put_line('Selected to Update Rows#: '||sql%rowcount);
dbms_output.put_line('Returned to Update Rows#: '||l_row_set_upd.count());
dbms_output.put_line(rpad('=', 100, '='));
for c in (
with sq as (select * from v$sql_plan_monitor
where sql_id in (select sql_id from v$sql_monitor
where lower(sql_text) like 'select%test_ks_2%' and sid = sys_context('userenv', 'sid')))
select sql_id, sid, sql_exec_start, plan_line_id, plan_operation, output_rows from sq
where sql_exec_id = (select max(sql_exec_id) from sq) and plan_line_id in (1, 2) order by plan_line_id)
loop
case
when c.plan_line_id = 1 then
l_updatable_rows := c.output_rows;
select sql_text into l_sql_text from v$sql where sql_id = c.sql_id and rownum = 1;
dbms_output.put_line('Session: '||c.sid||', at: '||c.sql_exec_start||', run SQL_ID: '||c.sql_id);
dbms_output.put_line('sql_text: '||l_sql_text);
dbms_output.put_line(rpad('=', 100, '='));
when c.plan_line_id = 2 then
dbms_output.put_line('Found Rows#: '||c.output_rows);
dbms_output.put_line('Updatable Rows#: '||l_updatable_rows);
dbms_output.put_line('Skipped Rows#: '||(c.output_rows - l_updatable_rows));
end case;
end loop;
select xid, start_scn, start_date into l_xid, l_start_scn, l_start_date
from v$transaction t
where (xidusn||'.'||xidslot||'.'||xidsqn) = dbms_transaction.local_transaction_id;
dbms_output.put_line(rpad('=', 100, '='));
dbms_output.put_line('XID = '||l_xid||', Start_SCN = '||l_start_scn||', Start_Date = '||l_start_date);
select /*+ GATHER_PLAN_STATISTICS MONITOR test_ks_3 */ test_upd_tab_row(x, y, 0, 0, 0)
bulk collect into l_row_set_start
from test_upd_tab as of scn l_start_scn where x between p_start and p_end;
dbms_output.put_line(rpad('=', 100, '='));
dbms_output.put_line('Selected at Start Rows#: '||SQL%ROWCOUNT);
dbms_output.put_line('Returned at Start Rows#: '||l_row_set_start.count());
dbms_output.put_line(rpad('=', 42, '=')||' Skip Locked Rows '||rpad('=', 42, '='));
dbms_output.put_line(rpad('X', 8, ' ')||rpad('Y', 8, ' '));
dbms_output.put_line(rpad('-', 8, '-')||rpad('-', 8, '-'));
for c in (select * from table(l_row_set_start) minus select * from table(l_row_set_upd) order by 1)
loop
dbms_output.put_line(rpad(c.x, 8, ' ')||rpad(c.y, 8, ' '));
end loop;
end;
/
2. Test Run
We open two Sqlplus sessions, and make following test.
2.1 Session_1
We first lock 3 rows with x between 5 and 7 in Session_1:
------------ Session_1@T1, lock 3 rows ------------
SQL > select * from test_upd_tab t where x between 5 and 7 for update skip locked;
X Y
---------- ----------
5 -5
6 -6
7 -7
2.2 Session_2
In Session_2, we are trying to lock 8 rows with x between 2 and 9.
The output shows that there are 8 rows found, but only 5 are updatable since 3 (=8-5) rows are locked by Session_1.
Then we list all 3 skipped rows.
------------ Session_2@T2, Print the number of skipped lock rows, and skip locked rows ------------
alter session set nls_date_format ='YYYY-MM-DD HH24:MI:SS';
SQL > exec test_update_skip_locked(2, 9);
====================================================================================================
Selected to Update Rows#: 5
Returned to Update Rows#: 5
====================================================================================================
Session: 553, at: 2024-10-22 05:44:44, run SQL_ID: 14bm0y4afwr9u
sql_text: SELECT /*+ index(t test_upd_tab_idx_1) GATHER_PLAN_STATISTICS MONITOR test_ks_2 */ TEST_UPD_TAB_ROW(X, Y, 0, 0, 0)
FROM TEST_UPD_TAB T WHERE X BETWEEN :B2 AND :B1 FOR UPDATE SKIP LOCKED
====================================================================================================
Found Rows#: 8
Updatable Rows#: 5
Skipped Rows#: 3
====================================================================================================
XID = 5800010042A60100, Start_SCN = 13106847731835, Start_Date = 2024-10-22 05:44:44
====================================================================================================
Selected at Start Rows#: 8
Returned at Start Rows#: 8
========================================== Skip Locked Rows ==========================================
X Y
----------------
5 -5
6 -6
7 -7
Here the SQL Monitoring Report:
select sys.dbms_sqltune.report_sql_monitor('14bm0y4afwr9u', report_level=>'all' , type=>'TEXT') from dual;
SQL Text
------------------------------
SELECT /*+ index(t test_upd_tab_idx_1) GATHER_PLAN_STATISTICS MONITOR test_ks_2 */ TEST_UPD_TAB_ROW(X, Y, 0, 0, 0)
FROM TEST_UPD_TAB T WHERE X BETWEEN :B2 AND :B1 FOR UPDATE SKIP LOCKED
SQL ID : 14bm0y4afwr9u
Binds
========================================================================================================================
| Name | Position | Type | Value |
========================================================================================================================
| :B2 | 1 | NUMBER | 2 |
| :B1 | 2 | NUMBER | 9 |
========================================================================================================================
Global Stats
======================================
| Elapsed | Cpu | Fetch | Buffer |
| Time(s) | Time(s) | Calls | Gets |
======================================
| 0.00 | 0.00 | 1 | 28 |
======================================
SQL Plan Monitoring Details (Plan Hash Value=1755639989)
===========================================================================================================================================================
| Id | Operation | Name | Rows | Cost | Time | Start | Execs | Rows | Activity | Activity Detail |
| | | | (Estim) | | Active(s) | Active | | (Actual) | (%) | (# samples) |
===========================================================================================================================================================
| 0 | SELECT STATEMENT | | | | 1 | +0 | 1 | 5 | | |
| 1 | FOR UPDATE | | | | 1 | +0 | 1 | 5 | | |
| 2 | FILTER | | | | 1 | +0 | 1 | 8 | | |
| 3 | TABLE ACCESS BY INDEX ROWID BATCHED | TEST_UPD_TAB | 10 | 1 | 1 | +0 | 1 | 8 | | |
| 4 | INDEX RANGE SCAN | TEST_UPD_TAB_IDX_1 | 10 | 1 | 1 | +0 | 1 | 8 | | |
===========================================================================================================================================================
3. Delete skip locked
Oracle does not support "delete skip locked" (error: ORA-00933: SQL command not properly ended). We can have a workaround if we run following code in Session_2:
------------ Session_2@T2, delete skip locked rows ------------
declare
p_start number := 2;
p_end number := 9;
l_row_set_upd test_upd_tab_set;
l_row_set_del test_upd_tab_set;
begin
select /*+ index(t test_upd_tab_idx_1) GATHER_PLAN_STATISTICS MONITOR test_ks_2 */ test_upd_tab_row(x, y, 0, 0, 0)
bulk collect into l_row_set_upd
from test_upd_tab t where x between p_start and p_end for update skip locked;
delete from test_upd_tab
where x between p_start and p_end
and x in (select x from table(l_row_set_upd))
returning test_upd_tab_row(x, y, 0, 0, 0) bulk collect into l_row_set_del;
dbms_output.put_line(rpad('=', 42, '=')||' Delete skip locked rows '||rpad('=', 42, '='));
dbms_output.put_line(rpad('X', 8, ' ')||rpad('Y', 8, ' '));
dbms_output.put_line(rpad('-', 8, '-')||rpad('-', 8, '-'));
for c in (select * from table(l_row_set_del) order by 1)
loop
dbms_output.put_line(rpad(c.x, 8, ' ')||rpad(c.y, 8, ' '));
end loop;
dbms_output.put_line('');
dbms_output.put_line(l_row_set_del.count()||' rows deleted.');
end;
/
Here the output:
========================================== Delete skip locked rows ==========================================
X Y
----------------
2 -2
3 -3
4 -4
8 -8
9 -9
4. Using Oracle behaviour of analytic function with skip locked
When facing question: "Is there a way to get the data of the rows that were skipped ?",
Solomon Yakobson (Feb 22 2018) in Oracle Forums: For Update Skip Locked (https://forums.oracle.com/ords/apexds/post/for-update-skip-locked-6618)
revealed one related Oracle behaviour of analytic function with skip locked.
4.1. Test of analytic function with skip locked
Here the test and all output, which shows locked row data will be included in analytic function related calculations of VAL_SUM, ROW_NUM.
(at first rollback all transactions in Session_1 and Session_2)
------------- Session_1@T1, Test Setup and one row update -------------
drop table test_skip_tab;
create table test_skip_tab as select level id, 100 val from dual connect by level <= 3;
select * from test_skip_tab;
update test_skip_tab set val = val where id = 2;
select sum(val), count(*) from test_skip_tab;
SUM(VAL) COUNT(*)
---------- ----------
300 3
select t.*, sum (val) over () val_sum, count (*) over () row_cnt, row_number() over (order by id) row_num from test_skip_tab t;
ID VAL VAL_SUM ROW_CNT ROW_NUM
---------- ---------- ---------- ---------- ----------
1 100 300 3 1
2 100 300 3 2
3 100 300 3 3
------------- Session_2@T2, look VAL_SUM, ROW_NUM -------------
select t.*, sum (val) over () val_sum, count (*) over () row_cnt, row_number() over (order by id) row_num from test_skip_tab t for update skip locked;
ID VAL VAL_SUM ROW_CNT ROW_NUM
---------- ---------- ---------- ---------- ----------
1 100 300 3 1
3 100 300 3 3
------------- Session_1@T3, look VAL_SUM, ROW_NUM -------------
select t.*, sum (val) over () val_sum, count (*) over () row_cnt, row_number() over (order by id) row_num from test_skip_tab t for update skip locked;
ID VAL VAL_SUM ROW_CNT ROW_NUM
---------- ---------- ---------- ---------- ----------
2 100 300 3 2
4.2. Use unexpected behaviour to in find the skipped rows.
Similar to Section 1 Test Setup, we first code one Plsql procedure:
create or replace procedure test_update_skip_locked_2(p_start number, p_end number) as
l_row_set_upd test_upd_tab_set;
l_updatable_rows number;
l_sql_text varchar2(4000);
l_xid varchar2(50);
l_start_scn number;
l_start_date date;
l_row_set_start test_upd_tab_set;
l_cnt number;
begin
select /*+ index(t test_upd_tab_idx_1) GATHER_PLAN_STATISTICS MONITOR test_ks_2b */
test_upd_tab_row(x, y, sum (1) over (), count (1) over (), row_number() over (order by x))
bulk collect into l_row_set_upd
from test_upd_tab t where x between p_start and p_end for update skip locked;
dbms_output.put_line(rpad('=', 100, '='));
dbms_output.put_line('Selected to Update Rows#: '||sql%rowcount);
dbms_output.put_line('Returned to Update Rows#: '||l_row_set_upd.count());
dbms_output.put_line(rpad('=', 100, '='));
dbms_output.put_line('Found Rows#: '||l_row_set_upd(1).rcnt);
dbms_output.put_line('Updatable Rows#: '||l_row_set_upd.count);
dbms_output.put_line('Skipped Rows#: '||(l_row_set_upd(1).rcnt - l_row_set_upd.count));
dbms_output.put_line(rpad('=', 100, '='));
for c in (select level + (p_start-1) rnum from dual connect by level <= l_row_set_upd(1).rcnt
minus
select t.rnum + (p_start-1) rnum from table(l_row_set_upd) t
)
loop
dbms_output.put_line('Skipped Row Number: '||c.rnum);
end loop;
select xid, start_scn, start_date into l_xid, l_start_scn, l_start_date
from v$transaction t
where (xidusn||'.'||xidslot||'.'||xidsqn) = dbms_transaction.local_transaction_id;
dbms_output.put_line(rpad('=', 100, '='));
dbms_output.put_line('XID = '||l_xid||', Start_SCN = '||l_start_scn||', Start_Date = '||l_start_date);
select /*+ GATHER_PLAN_STATISTICS MONITOR test_ks_3b */
test_upd_tab_row(x, y, sum (1) over (), count (1) over (), row_number() over (order by x))
bulk collect into l_row_set_start
from test_upd_tab as of scn l_start_scn where x between p_start and p_end;
dbms_output.put_line(rpad('=', 100, '='));
dbms_output.put_line('Selected at Start Rows#: '||SQL%ROWCOUNT);
dbms_output.put_line('Returned at Start Rows#: '||l_row_set_start.count());
dbms_output.put_line(rpad('=', 42, '=')||' Skip Locked Rows '||rpad('=', 42, '='));
dbms_output.put_line(rpad('X', 8, ' ')||rpad('Y', 8, ' '));
dbms_output.put_line(rpad('-', 8, '-')||rpad('-', 8, '-'));
for c in (select * from table(l_row_set_start) minus select * from table(l_row_set_upd) order by 1)
loop
dbms_output.put_line(rpad(c.x, 8, ' ')||rpad(c.y, 8, ' '));
end loop;
end;
/
4.3 Session_1 Test
We first lock 3 rows with x between 5 and 7 in Session_1:
(at first rollback all transactions in Session_1 and Session_2)
------------ Session_1@T1, lock 3 rows ------------
SQL > select * from test_upd_tab t where x between 5 and 7 for update skip locked;
X Y
---------- ----------
5 -5
6 -6
7 -7
4.4 Session_2 Test
In Session_2, we are trying to lock 8 rows with x between 2 and 9.
The output shows that there are 8 rows found, but only 5 are updatable since 3 (=8-5) rows are locked by Session_1.
Then we list all 3 skipped rows.
------------ Session_2@T2, Print the number of skipped lock rows, and skip locked rows ------------
alter session set nls_date_format ='YYYY-MM-DD HH24:MI:SS';
SQL > exec test_update_skip_locked_2(2, 9);
====================================================================================================
Selected to Update Rows#: 5
Returned to Update Rows#: 5
====================================================================================================
Found Rows#: 8
Updatable Rows#: 5
Skipped Rows#: 3
====================================================================================================
Skipped Row Number: 5
Skipped Row Number: 6
Skipped Row Number: 7
====================================================================================================
XID = 5F00140055F40100, Start_SCN = 13106847744696, Start_Date = 2024-10-22 10:16:57
====================================================================================================
Selected at Start Rows#: 8
Returned at Start Rows#: 8
========================================== Skip Locked Rows ==========================================
X Y
----------------
5 -5
6 -6
7 -7
5. Related Work
Rob van Wijk (February 7, 2009) in Blog: FOR UPDATE SKIP LOCKED (http://rwijk.blogspot.com/2009/02/for-update-skip-locked.html) showed:
(1). opening a cursor with the "for update skip locked" clause doesn't lock a single row. Fetching a row does lock the row.
(2). a "for update skip locked" doesn't only skip the locked rows, it also skips the rows that were modified between the opening and the fetching, thus avoiding the classic "lost update".
Sunday, September 22, 2024
One OracleJVM TIME_MODEL Test
In this Blog, we will make 5 different scenario tests of Java Stored Procedure running in Oracle RDBMS embedded JVM,
and collect their stats from Oracle V$SESS_TIME_MODEL and V$SYS_TIME_MODEL.
Note: Tested in Oracle 19.24 with single user session.
We run 5 different Scenarios (see Blog appended Test Code), each for 100 seconds.
Note: Tested in Oracle 19.24 with single user session.
1. Test Run
We run 5 different Scenarios (see Blog appended Test Code), each for 100 seconds.
set serveroutput on size 50000
-- Enable java println output on Sqlplus Window
exec dbms_java.set_output(50000);
exec TestOraJvmRun2_call(plsqlSleepSeconds=> 100);
exec TestOraJvmRun2_call(plsqlRunSeconds=> 100);
exec TestOraJvmRun2_call(javaPlsqlMixRunSeconds=> 100);
exec TestOraJvmRun2_call(javaSleepSeconds=> 100);
exec TestOraJvmRun2_call(javaRunSeconds=> 100);
2. Test Output
2.1 plsqlSleepSeconds
SQL > exec TestOraJvmRun2_call(plsqlSleepSeconds=> 100);
***** TestOraJvmRun2: plsqlSleepSeconds = 100, plsqlRunSeconds = 0, javaPlsqlMixRunSeconds = 0, javaSleepSeconds = 0, javaRunSeconds = 0
====== 1 Start plsqlSleepSeconds ========= at 16:09:06.699
====== 1 End plsqlSleepSeconds ========= at 16:10:47.252
====== 2 Start plsqlRunSeconds ========= at 16:10:47.252
====== 2 End plsqlRunSeconds ========= at 16:10:47.253
====== 3 Start javaPlsqlMixRunSeconds ========= at 16:10:47.253
====== 3 End javaPlsqlMixRunSeconds ========= at 16:10:47.253
====== 4 Start javaSleepSeconds ========= at 16:10:47.255
====== 4 End javaSleepSeconds ========= at 16:10:47.255
====== 5 Start javaRunSeconds ========= at 16:10:47.255
====== 5 End javaRunSeconds ========= at 16:10:47.255
============================================================
SESS_TIME_MODEL-stat_name (Sid=374, Run=1) val
------------------------------------------------------------
DB time 1.04
sql execute elapsed time 1.03
============================================================
SYS_TIME_MODEL-stat_name val
------------------------------------------------------------
background elapsed time 3.00
background cpu time 2.12
DB time 1.04
sql execute elapsed time 1.04
Elapsed: 00:01:41.23
2.2 plsqlRunSeconds
SQl > exec TestOraJvmRun2_call(plsqlRunSeconds=> 100);
***** TestOraJvmRun2: plsqlSleepSeconds = 0, plsqlRunSeconds = 100, javaPlsqlMixRunSeconds = 0, javaSleepSeconds = 0, javaRunSeconds = 0
====== 1 Start plsqlSleepSeconds ========= at 16:10:47.457
====== 1 End plsqlSleepSeconds ========= at 16:10:47.458
====== 2 Start plsqlRunSeconds ========= at 16:10:47.458
====== 2 End plsqlRunSeconds ========= at 16:12:27.515
====== 3 Start javaPlsqlMixRunSeconds ========= at 16:12:27.516
====== 3 End javaPlsqlMixRunSeconds ========= at 16:12:27.516
====== 4 Start javaSleepSeconds ========= at 16:12:27.516
====== 4 End javaSleepSeconds ========= at 16:12:27.516
====== 5 Start javaRunSeconds ========= at 16:12:27.516
====== 5 End javaRunSeconds ========= at 16:12:27.516
============================================================
SESS_TIME_MODEL-stat_name (Sid=374, Run=2) val
------------------------------------------------------------
DB time 99.81
sql execute elapsed time 99.81
DB CPU 99.38
PL/SQL execution elapsed time 54.10
============================================================
SYS_TIME_MODEL-stat_name val
------------------------------------------------------------
DB time 99.81
sql execute elapsed time 99.81
DB CPU 99.38
PL/SQL execution elapsed time 54.10
background elapsed time 50.32
background cpu time 18.25
Elapsed: 00:01:40.11
2.3 javaPlsqlMixRunSecond
SQL > exec TestOraJvmRun2_call(javaPlsqlMixRunSeconds=> 100);
***** TestOraJvmRun2: plsqlSleepSeconds = 0, plsqlRunSeconds = 0, javaPlsqlMixRunSeconds = 100, javaSleepSeconds = 0, javaRunSeconds = 0
====== 1 Start plsqlSleepSeconds ========= at 16:12:27.578
====== 1 End plsqlSleepSeconds ========= at 16:12:27.579
====== 2 Start plsqlRunSeconds ========= at 16:12:27.579
====== 2 End plsqlRunSeconds ========= at 16:12:27.579
====== 3 Start javaPlsqlMixRunSeconds ========= at 16:12:27.579
====== 3 End javaPlsqlMixRunSeconds ========= at 16:14:07.698
====== 4 Start javaSleepSeconds ========= at 16:14:07.698
====== 4 End javaSleepSeconds ========= at 16:14:07.698
====== 5 Start javaRunSeconds ========= at 16:14:07.698
====== 5 End javaRunSeconds ========= at 16:14:07.698
============================================================
SESS_TIME_MODEL-stat_name (Sid=374, Run=3) val
------------------------------------------------------------
DB time 99.75
sql execute elapsed time 99.75
Java execution elapsed time 52.99
DB CPU 51.92
PL/SQL execution elapsed time 19.07
============================================================
SYS_TIME_MODEL-stat_name val
------------------------------------------------------------
DB time 99.74
sql execute elapsed time 99.74
background elapsed time 68.16
Java execution elapsed time 52.99
DB CPU 51.91
PL/SQL execution elapsed time 19.07
background cpu time 16.64
Elapsed: 00:01:40.17
2.4 javaSleepSeconds
SQL > exec TestOraJvmRun2_call(javaSleepSeconds=> 100);
***** TestOraJvmRun2: plsqlSleepSeconds = 0, plsqlRunSeconds = 0, javaPlsqlMixRunSeconds = 0, javaSleepSeconds = 100, javaRunSeconds = 0
====== 1 Start plsqlSleepSeconds ========= at 16:14:07.757
====== 1 End plsqlSleepSeconds ========= at 16:14:07.758
====== 2 Start plsqlRunSeconds ========= at 16:14:07.758
====== 2 End plsqlRunSeconds ========= at 16:14:07.758
====== 3 Start javaPlsqlMixRunSeconds ========= at 16:14:07.758
====== 3 End javaPlsqlMixRunSeconds ========= at 16:14:07.758
====== 4 Start javaSleepSeconds ========= at 16:14:07.758
====== 4 End javaSleepSeconds ========= at 16:15:47.759
====== 5 Start javaRunSeconds ========= at 16:15:47.759
====== 5 End javaRunSeconds ========= at 16:15:47.759
============================================================
SESS_TIME_MODEL-stat_name (Sid=374, Run=4) val
------------------------------------------------------------
sql execute elapsed time 100.01
DB time 100.00
Java execution elapsed time 100.00
============================================================
SYS_TIME_MODEL-stat_name val
------------------------------------------------------------
DB time 100.01
sql execute elapsed time 100.01
Java execution elapsed time 100.00
background elapsed time 1.80
background cpu time 1.71
Elapsed: 00:01:40.05
2.5 javaRunSeconds
SQL > exec TestOraJvmRun2_call(javaRunSeconds=> 100);
***** TestOraJvmRun2: plsqlSleepSeconds = 0, plsqlRunSeconds = 0, javaPlsqlMixRunSeconds = 0, javaSleepSeconds = 0, javaRunSeconds = 100
====== 1 Start plsqlSleepSeconds ========= at 16:15:47.819
====== 1 End plsqlSleepSeconds ========= at 16:15:47.820
====== 2 Start plsqlRunSeconds ========= at 16:15:47.820
====== 2 End plsqlRunSeconds ========= at 16:15:47.820
====== 3 Start javaPlsqlMixRunSeconds ========= at 16:15:47.820
====== 3 End javaPlsqlMixRunSeconds ========= at 16:15:47.820
====== 4 Start javaSleepSeconds ========= at 16:15:47.820
====== 4 End javaSleepSeconds ========= at 16:15:47.820
====== 5 Start javaRunSeconds ========= at 16:15:47.820
====== 5 End javaRunSeconds ========= at 16:17:27.820
============================================================
SESS_TIME_MODEL-stat_name (Sid=374, Run=5) val
------------------------------------------------------------
DB time 100.01
Java execution elapsed time 100.01
sql execute elapsed time 100.01
DB CPU 99.56
============================================================
SYS_TIME_MODEL-stat_name val
------------------------------------------------------------
sql execute elapsed time 100.01
DB time 100.00
Java execution elapsed time 100.00
DB CPU 99.56
background elapsed time 3.74
background cpu time 2.17
Elapsed: 00:01:40.05
3. Test Code
3.1 Plsql Code
create table test_tab_1 as select 1 k, 1234 val from dual;
create or replace procedure plsql_run(p_run number := 1e3) as
l_x number;
begin
for f in 1..p_run loop
update test_tab_1 set val = mod (l_x, p_run/10);
commit;
end loop;
for f in 1..p_run*100 loop
l_x := mod (l_x, p_run) + sqrt (f);
end loop;
end;
/
-- exec plsql_run(1e3);
create or replace procedure plsql_run_seconds(p_run_sec number := 30) as
l_x number;
l_start_time number := dbms_utility.get_time;
begin
--dbms_session.sleep(p_sleep_sec);
while ((dbms_utility.get_time - l_start_time)/100 < p_run_sec) loop
plsql_run(1e3);
end loop;
end;
/
-- exec plsql_run_seconds(3);
3.2 Java Stored Procedure
create or replace and compile java source named "TestOraJvmRun2" as
import java.io.*;
import java.sql.*;
import java.text.SimpleDateFormat;
import oracle.jdbc.OracleDriver;
public class TestOraJvmRun2
{
public static String proc(String testName, int plsqlSleepSeconds, int plsqlRunSeconds, int javaPlsqlMixRunSeconds, int javaSleepSeconds, int javaRunSeconds) throws SQLException
{
String exceptMessage = "No Exception";
String test_title = ("\n***** "+ testName +
": plsqlSleepSeconds = " + plsqlSleepSeconds +
", plsqlRunSeconds = " + plsqlRunSeconds +
", javaPlsqlMixRunSeconds = " + javaPlsqlMixRunSeconds +
", javaSleepSeconds = " + javaSleepSeconds +
", javaRunSeconds = " + javaRunSeconds);
System.out.println(test_title);
try {
Connection connection = new OracleDriver().defaultConnection();
CallableStatement cstmt;
System.out.println("\n====== 1 Start plsqlSleepSeconds ========= at " + java.time.LocalDateTime.now());
cstmt = connection.prepareCall("begin dbms_session.sleep(?); end;");
cstmt.setInt(1, plsqlSleepSeconds);
cstmt.execute();
cstmt.close();
System.out.println("====== 1 End plsqlSleepSeconds ========= at " + java.time.LocalDateTime.now());
System.out.println("\n====== 2 Start plsqlRunSeconds ========= at " + java.time.LocalDateTime.now());
cstmt = connection.prepareCall("begin plsql_run_seconds(?); end;");
cstmt.setInt(1, plsqlRunSeconds);
cstmt.execute();
cstmt.close();
System.out.println("====== 2 End plsqlRunSeconds ========= at " + java.time.LocalDateTime.now());
System.out.println("\n====== 3 Start javaPlsqlMixRunSeconds ========= at " + java.time.LocalDateTime.now());
long sleepOneSecond = 1000*1000000L; // convert 1 second to nanoseconds
long startTime;
for (int i = 0; i < javaPlsqlMixRunSeconds; i++) { // java loop calling plsql
startTime = System.nanoTime();
while ((System.nanoTime() - startTime) < sleepOneSecond)
{try {
cstmt = connection.prepareCall("begin plsql_run(1e1); end;");
Thread.sleep(1);
cstmt.execute();
cstmt.close();
} catch (Exception e) {
exceptMessage = e.toString();
//System.out.println(e);
}
}
}
System.out.println("====== 3 End javaPlsqlMixRunSeconds ========= at " + java.time.LocalDateTime.now());
System.out.println("\n====== 4 Start javaSleepSeconds ========= at " + java.time.LocalDateTime.now());
{try {
Thread.sleep(javaSleepSeconds*1000);
} catch (Exception e) {
exceptMessage = e.toString();
//System.out.println(e);
}
}
System.out.println("====== 4 End javaSleepSeconds ========= at " + java.time.LocalDateTime.now());
System.out.println("\n====== 5 Start javaRunSeconds ========= at " + java.time.LocalDateTime.now());
for (int i = 0; i < javaRunSeconds; i++) {
startTime = System.nanoTime();
while ((System.nanoTime() - startTime) < sleepOneSecond)
{}
}
System.out.println("====== 5 End javaRunSeconds ========= at " + java.time.LocalDateTime.now());
} catch (Exception e) {
e.printStackTrace();
}
return test_title;
}
}
/
create or replace function TestOraJvmRun2_proc(testName varchar2, plsqlSleepSeconds number, plsqlRunSeconds number,
javaPlsqlMixRunSeconds number, javaSleepSeconds number, javaRunSeconds number)
return varchar2 as language java
name 'TestOraJvmRun2.proc(java.lang.String, int, int, int, int, int) return String';
/
3.3 Plsql Test Call
drop table test_run_tm_stat;
create table test_run_tm_stat as select 0 run, 0 seq, sysdate datetime, sid, stat_name, round(value/1e6, 2) val from V$SESS_TIME_MODEL where 1=2;
select * from test_run_tm_stat;
drop sequence TestOraJvmRun_seq;
create sequence TestOraJvmRun_seq;
create or replace procedure TestOraJvmRun2_call (testName VARCHAR2 :='TestOraJvmRun2', plsqlSleepSeconds number :=0, plsqlRunSeconds number :=0,
javaPlsqlMixRunSeconds number :=0, javaSleepSeconds number :=0, javaRunSeconds number :=0) as
l_run number := TestOraJvmRun_seq.nextval;
l_sid number := sys_context('userenv','sid');
l_wid number := 60;
l_ret VARCHAR2(200);
begin
insert into test_run_tm_stat
select l_run, 1, sysdate, sid, stat_name, round(value/1e6, 2) from V$SESS_TIME_MODEL where sid = l_sid order by value desc;
insert into test_run_tm_stat
select l_run, 1, sysdate, -1, stat_name, round(value/1e6, 2) from V$SYS_TIME_MODEL; -- sid = -1 for V$SYS_TIME_MODEL
l_ret := TestOraJvmRun2_proc(testName, plsqlSleepSeconds, plsqlRunSeconds, javaPlsqlMixRunSeconds, javaSleepSeconds, javaRunSeconds); -- sleep or run x seconds
--dbms_output.put_line(l_ret);
commit;
insert into test_run_tm_stat
select l_run, 2, sysdate, sid, stat_name, round(value/1e6, 2) from V$SESS_TIME_MODEL where sid = l_sid order by value desc;
insert into test_run_tm_stat
select l_run, 2, sysdate, -1, stat_name, round(value/1e6, 2) from V$SYS_TIME_MODEL; -- sid = -1 for V$SYS_TIME_MODEL
commit;
dbms_output.put_line(chr(10)||rpad('=', l_wid, '='));
dbms_output.put_line(rpad('SESS_TIME_MODEL-stat_name (Sid='||l_sid||', Run='||l_run||')', l_wid-10, ' ')||lpad('val', 10, ' '));
dbms_output.put_line(rpad('-', l_wid, '-'));
for c in
(select * from
(select run, seq, sid, stat_name, val-lag(val, 1) over(partition by stat_name order by run, seq) delta from test_run_tm_stat where run = l_run and sid > 0)
where delta >= 1 and seq=2 order by delta desc, stat_name)
loop
dbms_output.put_line(rpad(c.stat_name, l_wid-10, ' ')||lpad(to_char(c.delta, '999.99'), 10, ' '));
end loop;
dbms_output.put_line(chr(10)||rpad('=', l_wid, '='));
dbms_output.put_line(rpad('SYS_TIME_MODEL-stat_name', l_wid-10, ' ')||lpad('val', 10, ' '));
dbms_output.put_line(rpad('-', l_wid, '-'));
for c in
(select * from
(select run, seq, sid, stat_name, val-lag(val, 1) over(partition by stat_name order by run, seq) delta from test_run_tm_stat where run = l_run and sid = -1)
where delta >= 1 and seq=2 order by delta desc, stat_name)
loop
dbms_output.put_line(rpad(c.stat_name, l_wid-10, ' ')||lpad(to_char(c.delta, '999.99'), 10, ' '));
end loop;
end;
/
Subscribe to:
Posts (Atom)